domingo, 27 de noviembre de 2011
el numero pi
Los antiguos egipcios (hacia 1600 a. de C.) ya sabían que existía una relación entre la longitud de la circunferencia y su diámetro; y entre el área del círculo y el diámetro al cuadrado (seguramente de forma intuitiva). En el Papiro de Rhind puede leerse lo siguiente: "Corta 1/9 del diámetro y construye un cuadrado sobre la longitud restante. Este cuadrado tiene el mismo área que el circulo". Es decir, el área del círculo (llamémosla A) es igual al cuadrado de 8/9 del diámetro (d=2r), A = d2*64/81 = 4r2*64/81 = r2*256/81. Esto equivale a decir que asignaban a
el valor 256/81, aproximadamente
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario